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The Commercial Aviation Safety Team found the majority of recent international 

commercial aviation accidents attributable to loss of control inflight involved flight crew loss 

of airplane state awareness (ASA), and distraction was involved in all of them.  Research on 

attention-related human performance limiting states (AHPLS) such as channelized 

attention, diverted attention, startle/surprise, and confirmation bias, has been recommended 

in a Safety Enhancement (SE) entitled “Training for Attention Management.”  To 

accomplish the detection of such cognitive and psychophysiological states, a broad suite of 

sensors was implemented to simultaneously measure their physiological markers during a 

high fidelity flight simulation human subject study.  Twenty-four pilot participants were 

asked to wear the sensors while they performed benchmark tasks and motion-based flight 

scenarios designed to induce AHPLS.  Pattern classification was employed to predict the 

occurrence of AHPLS during flight simulation also designed to induce those states.  

Classifier training data were collected during performance of the benchmark tasks.  

Multimodal classification was performed, using pre-processed electroencephalography, 

galvanic skin response, electrocardiogram, and respiration signals as input features.  A 

combination of one, some or all modalities were used.  Extreme gradient boosting, random 

forest and two support vector machine classifiers were implemented.  The best accuracy for 

each modality-classifier combination is reported.  Results using a select set of features and 

using the full set of available features are presented.  Further, results are presented for 

training one classifier with the combined features and for training multiple classifiers with 

features from each modality separately.  Using the select set of features and combined 

training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants 

and was significantly higher than that for the separate training case.  These results support 

the goal of demonstrating simultaneous real-time classification of multiple states using 

multiple sensing modalities in high fidelity flight simulators.  This detection is intended to 

support and inform training methods under development to mitigate the loss of ASA and 

thus reduce accidents and incidents. 

I. Introduction 

HE Commercial Aviation Safety Team (CAST) has established a Safety Enhancement entitled “Training for 

Attention Management,”1,2 which calls for research and development on the detection of attention-related 

human performance limiting states (AHPLS).  Such cognitive states can cause pilots to lose airplane state 

awareness, which CAST has specified as a causal factor in commercial aviation accidents and incidents.  Analogous 
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to training to recognize one’s own reaction to symptoms of hypoxia or fatigue and respond appropriately, the 

detection of these states will aid the development of training methods to improve self-monitoring of and response to 

one’s own attentional performance, thus increasing airplane state awareness to avoid accidents.  Therefore, the 

cognitive states of interest in the present study are AHPLS - specifically channelized attention, diverted attention, 

confirmation bias, and startle/surprise.   

The Crew State Monitoring group at the NASA Langley Research Center (LaRC) has implemented an end-to-

end system to test the capability of predicting the occurrence of these cognitive states simultaneously in real time 

using psychophysiological data recorded via multiple sensing modalities.  Here, results from a study conducted in a 

high fidelity motion-based flight simulator are reported which follow up on initial results previously reported from a 

study conducted in a fixed-base flight simulator.  The initial results quantified the ability to discriminate between 

cognitive states as induced by benchmark tasks.3  In the current study, the same benchmark tasks were used with 

new pilot participants to train classifier models which are then used to predict the cognitive state of those 

participants during flight simulation scenarios.  The initial focus is on the states of Channelized Attention and 

Startle/Surprise. 

Multimodal psychophysiological sensing for engagement, fatigue, emotion and workload prediction is emerging, 

4-8 but prior work has not fully investigated the classification accuracy for the particular group of AHPLS of interest 

to CAST based on multimodal sensing in a real-time system using operationally-relevant, realistic flight scenarios.  

Further, data fusion methods for classifying psychological states from psychophysiological measures have not yet 

matured to universal acceptance9 and the generalizability of classifier models across tasks, time and participants is 

yet to be fully determined.  The study aim was to determine the accuracy with which AHPL state predictions can be 

made using multimodal psychophysiological measures as classifier input features.  To answer this question, a variety 

of classifier models were implemented to predict AHPLS and determine how well those predictions converged with 

the intention of AHPLS-inducing flight simulation scenarios.   

Data for the present report were collected during a human subject study using multiple simultaneous 

psychophysiological measures as a means of detecting AHPLS during both benchmark tasks and during 

experimental flight scenarios presented in a high-fidelity motion-based flight simulator.  Each sensor’s measured 

time series were processed individually prior to use to derive variables as needed and extract psychophysiological 

information relevant to AHPLS detection.  Benchmark task data were used to train classifier models using all 

sensing modalities as input features on a per-participant basis.  Then, a state prediction from among the states of 

interest was made for each subsequent small time window during simulated flight.  If successful, the methods and 

prototype system will be ready for hardening toward further validation in future flight simulation experiments and 

for development as a mobile system to support demonstrations and use outside the research environment.  One 

example of such use is in commercial operational flight training facilities. 

II. Data Collection Methods 

Twenty-four commercial aviation pilots (two per crew, none female) were asked to perform tasks in a motion-

based flight simulator while wearing psychophysiological sensors.  All participants consented to take part in the 

study as approved by the Institutional Review Board of NASA LaRC.  The tasks included: resting tasks, benchmark 

tasks designed to induce AHPLS and low/high workload conditions, and experimental flight scenarios.  Data 

collection was performed in the Research Flight Deck in the Cockpit Motion Facility at LaRC.  Variations in 

attentional demand, startle/surprise and task load throughout the experimental flight scenarios were designed to 

induce AHPLS.   

Psychophysiological sensors were applied to both participants to measure electroencephalography (EEG) signals 

using an Advanced Brain Monitoring electrode head net,10 and to measure three-point electrocardiogram (ECG), 

respiration, and galvanic skin response (GSR) signals via a Mind Media, B.V. Nexus Mark II system.  All measures 

were recorded passively throughout all tasks and simulated flight performance.  Functional Near Infrared 

Spectroscopy (fNIRS) signals were measured for the captain’s seat only using the Imagent by ISS, Inc.  Pilot visual 

behavior and physiological eye responses were recorded in the flight simulator at both seats via a Smart Eye, AB. 

eye tracking system.  Simulator flight control inputs were also recorded.   

Three self-report questionnaires were administered after each task: the subjective NASA Task Load Index to 

evaluate each participant’s workload,11 a questionnaire regarding the extent to which each AHPLS was experienced, 

and the qualitative NASA Situation Awareness Rating Technique (SART)12 to assess situation awareness.  

Additionally, at the conclusion of the day-long study, participants were asked: “1.  Do you have any feedback on 

wearing the physio equipment?” and “2.  Did any of the equipment hinder your performance?”  This served to 

formally collect first-hand opinions regarding the comfort and intrusiveness of the sensor instrumentation. 
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All measured time series were recorded using MAPPS (EyesDx, Inc., Coralville, IA), a software suite designed 

to collect aircraft and simulator state, event markers, video, and pilot psychophysiological and behavioral data.  The 

software time synchronizes all data channels for real-time review, as well as post-hoc analysis.  The sampling rate 

was 256 Hz.  EEG was reduced to examine frequency domain components via spectral analysis,13,14 heart rate 

variability analysis was conducted on the ECG, and skin conductance level and skin conductance responses were 

derived from GSR signal to generate classifier input features in addition to the normalized time series 

measurements.  The fNIRS signals were not recorded directly into MAPPS due to limitations with the MAPPS 

software.  These were recorded at 6.25 Hz.  Task engagement will be assessed15 depending on fNIRS signal quality 

and presented separately.  Also, data dropout issues were too pervasive to include eye tracking.  Thus, 

psychophysiological signals included in these initial flight simulation prediction results are EEG, GSR, ECG and 

Respiration.   

A “benchmark task” was used to induce each 

AHPL state.  Use of benchmark tasks was modeled 

after the methods of Hirshfield, et al.16  The 

AHPLS to be predicted and the selected benchmark 

tasks are listed in Table 1 and were described 

previously.3  These tasks are used to induce AHPLS 

under controlled conditions for 6 minutes each, and 

were chosen for their high likelihood to induce 

these experiences in isolation and with the full 

knowledge of the participant (except for the startle 

task and the high versus low workload condition).  

Many of these tasks have been employed in 

previous task-oriented research.17-21   Moments of 

reflexive startle and subsequent surprise due to 

expectation mismatch lasted only 15 seconds per 

benchmark state induction, producing class 

imbalance. 

Features extracted from signals collected during 

the benchmark tasks were used for classifier 

training purposes.  Subsequently, and separately, simulated flight scenarios were presented to the pilot participants 

to strategically induce AHPLS.  Signals collected during the simulated flight tasks were used as the test data, from 

which the same features were extracted, to produce classifier predictions.  Accuracy reported here is determined by 

comparing the state predicted by the classifier model to the state induction intended by the flight scenario design.  

Aside from the use of one crew’s benchmark and simulation data to select classifier tuning parameters, none of the 

flight simulation data were used to generate the model.  Immature classifier models were used to predict state in real 

time during data collection.  To develop mature and accurate classifier models and methods, the results reported here 

explore the sensing modalities, feature types, and classifier training method combinations which produce the most 

accurate results.   

 

III. Data Processing Methods 

As introduced above, and similar to methods previously reported,3 measurements made during the benchmark 

tasks provide required ground truth for use with state classifiers using supervised machine learning techniques.  

Classifier models were trained to recognize pilot state during the experimental flight scenarios based on patterns of 

the physiological signals measured during the benchmark tasks.  In this way, the benchmark data was used without a 

preconceived model of expected physiological signal change.  Classifier model training data was that which was 

collected during both baseline resting and benchmark-task-induced states, enabling multi-state classification.  The 

state classifiers then were used to characterize operator state during the times of intended state induction for each 

time point during the experimental flight scenario.  During the flight simulation, channelized attention and 

startle/surprise were induced twice each during a Line-Oriented Flight Training scenario.  Channelized Attention 

was induced after a Hydraulic System Pressure alert and a Trailing Edge Flap Asymmetry problem.  Startle and 

surprise22 were induced by unexpected but operationally-realistic flight events on takeoff and landing.  This 

produced 3.6 to 7.3 minutes of channelized attention simulation prediction data, and 25 to 42 seconds of startle and 

surprise data.  Classifier training and state prediction for Channelized Attention and Startle/Surprise were performed 

for 13 of the 24 participants who had complete data sets.   

AHPLS Task 

Baseline rest Rest, eyes open, crosshair 

Channelized Attention Tetris 

Diverted Attention Vigilance Task with Math 

High Workload 

complex multi-task 
MATB* High Workload 

Low Workload 

complex multi-task 
MATB Low Workload 

Startle / Surprise Movie Scene Observation 

Confirmation Bias Prestige number sequences 

*Multi-Attribute Task Battery: available at 

http://matb.larc.nasa.gov/ 

Table 1. Benchmark Tasks. 
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A. Feature Generation and Down-selection 

For each participant and 

for each sensing modality, 

normalized time series 

features were calculated 

over a 5 second window and 

updated every second to 

support near real-time 

output.  To deal with class 

imbalance, data consisted of 

30 seconds of Startle/ 

Surprise benchmark data and 

30 seconds of Channelized 

Attention benchmark data.  

The derived features are 

listed and summed in Table 

2.  The summary statistics 

consisted of 15 features: the 

first four moments, 

coefficient of variation, 

seven quantiles (p = 0.25, 

0.50, 0.75, 0.025, 0.975, 0.005, 0.995), interquartile range, entropy, and area under the curve.  Power spectral 

density (PSD) features consisted of the PSD estimates for 1 - 40 Hz in 1Hz bins, generating 40 features per channel.  

For the features generated by wavelet decomposition, we have employed an extension of the work of Von 

Tsharner23 wherein a flattened Gaussian basis function is used.  However, contrary to the use of an arbitrary cutoff 

frequency, filter bank design was constrained via an objective function to represent the EEG frequency bands 

between 1 and 40Hz.  Wavelet decomposition features consisted of the wavelet coefficients for a level 7 

decomposition using a Daubechies-4 wavelet, with a window size of 256 samples and window increment of 32.24,25  

Respiration rate was calculated using a weighted average of the fundamental frequency per minute.  Average slope 

for GSR was calculated as the first-order difference of the signal.  Drop score for GSR was calculated as the count 

of time instances in which GSR slope drops below -0.25.  Programming was performed in MATLAB version 

2015a.26 

Features were down-selected from 1810 to 635 using 5-

fold cross validation of complex tree models using the 

benchmark training data and predicting channelized attention 

and startle/surprise.  Features were selected based on both 

counting the number of times a feature was used to create a 

split in the tree model, and on a mean squared feature 

importance metric.27 Six important features for ECG 

(Variance, Skewness, Kurtosis, Quantile (p = 0.005), 

Interquartile Range, Entropy28,29), five important features for 

respiration (Respiration rate, Variance, Quantile (p = .975), 

Quantile (p = 0.025), Quantile (p = 0.25)), and five important 

features for GSR (Average slope, Drop score, Mean, 

Skewness, Quantile (p = 0.975)) were identified.  Heart rate 

variability (HRV) mean and variance also were included, 

derived from the ECG signal.  The Pan Tompkins30 algorithm 

was used to detect the QRS complex in the ECG signal and 

return the locations of the R waves.  HRV was calculated as 

reciprocal of the difference between adjacent R wave 

locations.  Feature importance results for predicting 

Channelized Attention and Startle/ Surprise informed the 

feature set down-selection.  The most important feature was 

found to be one of various EEG channels,31 as shown in Table 

3.  The top seven of these were used for “select” analyses 

while all were used for “all” analyses.  The second-most 

Modality Feature Types Number of Features 

ECG  Summary statistics of time series 15 

HRV  Mean and variance 2 

EEG 

 Summary statistics for time series 

 PSD frequencies 1-40Hz 

 Wavelet decomposition 

15 x 20 channels 

40 x 20 channels 

33 x 20 channels 

Respiration 
 Summary statistics of time series 

 Respiration rate 

15 

1 

GSR 
 Summary statistics of time series 

 Average slope and drop score 

15 

2 

Total  1810 

Table 2. Feature types per sensing modality. 

 

Importance 

Rank 

EEG 

Channel 

Occurrences  

as most 

important 

1 FP1 9 

2 T5 5 

3 O2 4 

4 Fz 4 

5 O1 3 

6 F7 3 

7 F8 3 

8 T6 2 

9 C3 2 

10 T3 1 

11 P4 1 

Table 3. EEG channel importance. 
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important feature was respiration rate.  The third was GSR slope change.  Feature sets, all, and select were each used 

separately to produce results.   

B. Classifier Types and Training Methods 

Four different machine learning classifiers were 

investigated as candidate classifier types: (1) 

random forests (Scikit-Learn*), (2) gradient 

boosting (XGB†), (3) Nu-Support Vector Machine 

(ν-SVM*) with radial basis function kernels, and (4) 

ν-SVM with polynomial (2nd and 3rd) kernels.  

Random forest is an ensemble model which trains 

multiple weak decision tree classifiers that are 

combined into a single, robust model.32  Random 

forest decision trees are trained using feature 

bootstrap aggregation, or bagging. Gradient 

boosting is an ensemble machine learning technique 

which fits many classification and regression trees 

(CART) to the input data.33  CARTs are trained via 

the boosting method where multiple weak models 

are eventually combined into a single, effective 

model.  ν-SVMs are similar to classic SVMs, but 

use a parameter ν to control the number of support 

vectors.34  Programming was performed in 

MATLAB24 and Python version 2.7‡. 

Due to class imbalance in the benchmark data 

(the ratio of Channelized Attention samples 

[approximately 350 samples] to Startle/Surprise 

samples [approximately 25 samples] being roughly 

14:1), a training/testing method based on the 

EasyEnsemble35 algorithm was used.  Each 

classifier’s tuning parameters, per modality, were 

optimized for one crew using benchmark training 

and flight simulation test data from that one crew.  

Two sets of parameters were determined separately 

for the captain in the left seat and the first officer in 

the right seat because event experiences may have 

differed depending on their different flight tasks.  

These parameters were used for all the other participants depending on the seat.  The parameters examined are given 

in Table 4.   

Binary class (Channelized Attention or Startle/Surprise) predictions were made per participant (using tuning 

parameters depending on the seat) using each of the four candidate classifier types.  Channelized Attention state 

induction lasted approximately 6 minutes and Startle/Surprise state induction lasted approximately 30 seconds total 

during flight simulation.  During these times, accuracy was determined using a weighted area under the curve 

(AUC) to account for imbalanced classes.  Results were generated using features from one, two, three and all four of 

the included sensing modalities, in all combinations.  This was repeated across four different classifier training 

cases: two different feature sets (described in section III A) and two different training approaches. The two training 

approaches are as follows.  Classifier models were trained on: (1) sensing modality features independently, 

generating multiple separate models and multiple predictions to feed one overall prediction, and (2) sensing 

modality features combined to train one model and produce one prediction.  For the separate training method, the 

                                                           
* SKLearn available at: http://scikit-learn.org/stable/modules/generated/ 

sklearn.ensemble.RandomForestClassifier.html 
† eXtreme Gradient Boosting (XGB) available at: https://xgboost.readthedocs.org/en/latest/ 
‡ Python Software Foundation. Python Language Reference, version 2.7 available at http://www.python.org 

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official 

endorsement, either expressed or implied, by the National Aeronautics and Space Administration. 

Classifier Model Parameter values 

Random forest  

Estimators 25, 50, 100, 200 

Criterion Gini, entropy 

Max features sqrt(q), log2(q), 1  

Gradient boosting  

Estimators 50, 100, 200 

Row subsampling 0.75, 1 

Max depth 3, 6 

Learning rate 0.1, 0.01 

L2 norm 0, 0.01 

Feature subsampling 0.8, 1 

ν-SVM radial basis  

Gamma 
1, 0.01, 0.001, 

0.0001 

Nu 0.1, 0.3, 0.5, 0.7, 0.9 

ν-SVM polynomial  

Gamma 
1, 0.01, 0.001, 

0.0001 

Nu 0.1, 0.3, 0.5, 0.7, 0.9 

Polynomial degree 1, 2, 3 

q denotes the number of features 

Table 4. Model Hyperparameters. 
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overall prediction was based on first summing the predicted probabilities, and then using the argmax of the class 

probability vector as the class label.  Results were calculated using all features and again using the selected features 

as described above.  Thus, the four cases are: select separate, select combined, all separate, and all combined.  The 

best-performing (highest weighted area under curve, AUC) candidate classifier type for each modality combination 

was then reported.  Results for each case are presented below.   

IV. Results and Discussion 

Participant responses regarding the comfort and intrusiveness of the sensor instrumentation for the 24 of the 26 

participants who responded are tallied according to level of concern in Table 5.  The overall lack of concern 

encourages confidence in the validity of performance results despite the sensors.  Major concerns such as GSR 

finger sensor location and wire management may be readily addressed in future studies.  Further investment in 

sensor obtrusiveness reduction should improve crew acceptance toward implementation in operational contexts. 

Subjective self-report of situational awareness (SART),12 

reported in Table 6, showed the flight training scenario challenged 

the situational awareness of the participants as intended, with an 

average SART score of 44 which fell between the low workload 

and high workload SART ratings.  Subjective self-report of 

workload (TLX)11 showed that the workload was high, with an 

average TLX score of 62 which fell nearest to the TLX scores of 

the channelized attention and high workload benchmark tasks. 

Not surprisingly, the state prediction accuracy results show a 

dependency on machine learning classifier type, sensing 

modalities, feature sets, and training methods.  Signal processing 

and data quality are also expected to affect outcomes, but were not 

parameterized here.  Optimization is also expected to vary across 

participants.  The maximum, minimum, average and standard 

deviation across the 13 participants is given in Tables 7 and 8.   

Using all features with separate training per modality, using 

three modalities yielded the result with the overall best accuracy 

for this study (0.95 with EEG, Respiration and GSR).  Using all 

features with combined training, using two modalities yielded the 

result with the second-best accuracy for this study (0.93 with ECG 

and GSR).  However, in general, combined training resulted in mean AUC results both greater than and less than 

those with separate training.  For separate training, comparing results between using all and selected features 

showed no significant differences. 

AHPL task NASA TLX SART 

Rest 25 132 

Diverted 

Attention 
59 28 

Channelized 

Attention 
62 34 

Low Workload 49 58 

High Workload 64 29 

Confirmation 

Bias 
58 -6 

Startle / 

Surprise 
27 81 

Flight Scenario 62 44 

Table 6. Subjective self-report of workload 

(TLX) and situational awareness (SART). 

 

Concerns Question 1 Question 2 feedback 

None 11 12 

 “Didn’t notice it much after a while” 

 “Considering all of the things it was measuring, it was 

pretty comfortable, even toward the end of the day” 

 “Virtually invisible. After a few minutes, it’s hard to 

even know it’s there” 

Minimal 10 9 

 “Awkward and uncomfortable, but manageable” 

 A few comments concerning the fNIRS being 

uncomfortable 

 Gear didn’t necessarily hinder flight performance, 

but still remained “a little distracting” for some 

Major 3 3 

 “Would have been better to have finger sensors on 

stick hand” 

 “Restricted my motion on several occasions as the 

wires would seem to be binding against the harness 

or the chair or something else in the cockpit” 

Table 5. Categorization of Participant Feedback on Psychophysiological Gear. 
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Using select features in the case of three modalities, combined training was significantly better than training 

separate classifiers for each modality (0.64 +/- 0.14 > 0.57 +/- 0.09, p<0.025 (single tail, paired)).  Using select 

features for two modalities, combined training tended to be better than separate.  While no single sensing modality 

appeared significantly more often in high-accuracy combinations, EEG was among the select features which yielded 

all the best (maximum) AUC results regardless of the number of modalities used.   

Results are encouraging and informative for work toward a translational real-time, multimodal, multi-state 

system under development.  We note that both the SVM with a polynomial kernel and XGBoost have provided good 

results.  However, further testing is needed before recommendations can be made regarding which classifier types 

are best for such a system.  Combining modalities to train one classifier generally led to slightly better classifier 

performance than training separate modality-specific classifiers.  Training with modalities combined allows 

synergistic or mutual information to be used.  On the other hand, using modalities separately offers a more robust 

solution for operations, for example if signal is lost for one of the modalities, the other classifiers would still be 

active.   

V. Limitations and Future Work 

Further analysis will be performed to validate state induction by the simulations with physical behavioral and 

flight technical performance data, and subject matter expert opinion.  Cognitive state predictions during the flight 

simulation scenarios may be further validated (beyond a comparison to the intended state induction) by the 

additional convergence of behavioral markers and missed manipulation checks.   

 
All Separate All Combined 

number of 

modalities 
1 2 3 4 2 3 4 

average AUC 0.630 0.618 0.587 0.534 0.643 0.613 0.495 

std. deviation 0.119 0.135 0.153 0.151 0.128 0.110 0.155 

max AUC 0.845 0.876 0.953 0.823 0.934 0.871 0.735 

min AUC 0.509 0.455 0.393 0.268 0.500 0.499 0.117 

 

 

times the modality appeared in  

the best combination 

times the modality appeared in the 

best combination 

R 2 8 10 13 5 11 13 

EEG 4 2 6 13 5 7 13 

ECG 5 9 12 13 9 10 13 

GSR 0 7 11 13 7 11 13 

 

 

times the modality appeared  

in a combination with  

accuracy above 0.70 

times the modality appeared  

in a combination with  

accuracy above 0.70 

R 1 3 2 2 1 2 1 

EEG 2 0 2 2 1 2 1 

ECG 1 2 2 2 4 3 1 

GSR 0 3 3 2 2 2 1 

Table 7. Results using all features for the separate and combined training cases.  Classifier models were 

trained on: (1) sensing modality features independently, generating multiple separate models and multiple 

predictions to feed one overall prediction, and (2) sensing modality features combined to train one model and 

produce one prediction.  Results were calculated using all features. 
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Classification accuracy is reported here for participant-dependent classifier models.  In future efforts, both 

participant-dependent and participant-independent classification will be used to investigate the performance of 

model individualization methods36 vs. more easily-implemented participant-independent methods.  In this way, the 

benchmark and flight simulation data from many participants could be used to create generic models with 

hyperparameters optimized on benchmark-to-flight generalizability.  Individualized, participant-dependent models 

may offer greater accuracy, especially if individually tuned, while participant-independent models obviate user-

specific classifier training time.  The need for less time would offer a significant advantage for operational use, such 

as training pilots to recognize AHPLS and better manage their own attention.  Future efforts will also incorporate 

eye tracking and fNIRS data as additional, informative features, and will make predictions for High and Low 

Workload37,38 and Diverted Attention in addition to Channelized Attention and Startle/Surprise. 

Experiments and techniques to assess and improve generalizability across days39 are yet to be explored, and also 

of importance for operational use.  Better understanding of the natural overlap of and switching between AHPLS 

during flight and during simulated flight would inform future applications of a translatable system envisioned for 

use during flight instruction.  Such applications will require cross-task generalizability for use across various 

scenario events and AHPLS induction periods.  Benchmark task development and refinement toward more flight-

like tasks and toward an improved and better-understood Confirmation Bias task is also indicated.  Notably, the 

SART score for the benchmark Confirmation Bias task was negative.  Also, increasing the amount of training data 

available for fleeting Startle/Surprise events may allow for separate prediction of these two responses.  For further 

improvement of accuracy in operational contexts, employing adaptive on-line machine learning techniques is of 

 
Select Separate Select Combined 

number of 

modalities 
1 2 3 4 2 3 4 

average AUC 0.637 0.609 0.567* 0.495 0.649 0.637* 0.499 

std. deviation 0.110 0.119 0.090 0.110 0.098 0.138 0.191 

max AUC 0.832 0.832 0.808 0.772 0.853 0.860 0.837 

min AUC 0.501 0.495 0.463 0.351 0.500 0.490 0.040 

* p < 0.025 

 

times the modality appeared in  

the best combination 

times the modality appeared in the 

best combination 

R 0 8 8 13 8 10 13 

EEG 7 6 7 13 6 8 13 

ECG 3 8 12 13 7 10 13 

GSR 1 4 12 13 5 11 13 

 

 

times the modality appeared  

in a combination with  

accuracy above 0.70 

times the modality appeared  

in a combination with  

accuracy above 0.70 

R 0 2 0 1 0 2 2 

EEG 3 4 2 1 1 3 2 

ECG 0 0 2 1 1 3 2 

GSR 1 2 2 1 2 4 2 

Table 8. Results using select features for the separate and combined training cases. Classifier models 

were trained on: (1) sensing modality features independently, generating multiple separate models and multiple 

predictions to feed one overall prediction, and (2) sensing modality features combined to train one model and 

produce one prediction.  Results were calculated using select features. 
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interest to reduce or eliminate individual classifier training time while maintaining useful positive predictive 

power.9,40-42  Finally, data quality issues need to be addressed, including the implementation of data quality metrics 

to inform end users and guard against false positive or nuisance predictions.  The eye tracker sometimes lost sight of 

the gaze, leading to dropped eye tracking data.  Certain tasks led to a higher chance of this data loss, indicating that 

data quality metrics may potentially be used as informative features of their own.   

VI. Conclusion 

The results of this work are useful for determining the value of simultaneous multimodal psychophysiological 

measures and the value each sensing modality brings to classifier accuracy.  Sensor instrumentation may then be 

chosen by weighing their value against the cost of using them in operational training contexts.  Costs include pilot 

acceptance, obtrusiveness, comfort and privacy considerations, time spent training the classifier or applying sensors, 

and potential distraction from primary tasking – that of safe flight, real or simulated.  However, such costs may not 

be appropriately weighed against the value of psychophysiological sensing until that value is adequately assessed 

and understood.  This work begins to determine that value, and the projected efficacy of a crew state monitoring 

system and its potential future impact on the avoidance, detection, mitigation, and recovery from safety-critical 

human crew error.  Real time state prediction information can be fed to the pilot themselves, their flight instructors, 

or automated intelligence in the cockpit to improve pilot flight performance, assist in the avoidance of errors during 

flight path monitoring, and optimize human-automation interaction.   
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